
mutations, perhaps in the context of a diploid model analogous to
the haploid one presented here.

Hsp90 might be a member of a fairly large class of genes with the
ability to serve as evolutionary capacitors, most of which might have
more subtle effects than Hsp90 has. The existence of this com-
plementary set of capacitors means that adaptation by means of the
release of canalized variation might be possible even under con-
ditions that do not involve chronic environmental stress, such as
sexual selection and predator–prey ‘arms races’. The proposed
capacitance mechanism could be tested by the analysis of genotypic
and phenotypic data from populations of a laboratory microorgan-
ism, such as S. cerevisiae or Escherichia coli, at successive stages in
adaptation to an artificial selection regime. As for natural adap-
tations, establishing the role of Hsp90 or another potential capaci-
tor in facilitating the evolution of any particular trait will require
intensive investigation of the relevant ecological, population-
biological and evolutionary-genetic history. A

Methods
Gene networks and their evolution were modelled as described previously14. The original
model, and extensions of it used here, are described fully in Supplementary Information.
The yeast gene-expression data are from ref. 20. The statistical tests presented use the same
stringent criterion for declaring a gene a regulatory target of the knocked out gene as that
used by those authors. To ensure the robustness of our results we repeated the tests with a
range of more lenient criteria; in all cases the test results remained significant. Details of
our analysis, including a list of microarray experiments used, are also available in
Supplementary Information.
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Neurons can produce action potentials with high temporal
precision1. A fundamental issue is whether, and how, this capa-
bility is used in information processing. According to the ‘cell
assembly’ hypothesis, transient synchrony of anatomically dis-
tributed groups of neurons underlies processing of both external
sensory input and internal cognitive mechanisms2–4. Accord-
ingly, neuron populations should be arranged into groups
whose synchrony exceeds that predicted by common modulation
by sensory input. Here we find that the spike times of hippo-
campal pyramidal cells can be predicted more accurately by using
the spike times of simultaneously recorded neurons in addition
to the animals location in space. This improvement remained
when the spatial prediction was refined with a spatially depen-
dent theta phase modulation5–8. The time window in which spike
times are best predicted from simultaneous peer activity is 10–
30 ms, suggesting that cell assemblies are synchronized at this
timescale. Because this temporal window matches the membrane
time constant of pyramidal neurons9, the period of the hippo-
campal gamma oscillation10 and the time window for synaptic
plasticity11, we propose that cooperative activity at this timescale
is optimal for information transmission and storage in cortical
circuits.

In sensory brain regions, the temporal pattern of spikes can
correlate precisely with the time course of an external stimulus12–14.
In high-level structures, however, neural responses are often more
variable than is expected from sensory control15. Is this variability
simply noise16, or does it reflect the operation of internal, non-
sensory processes? In the hippocampus, the timing of pyramidal cell
spikes with respect to a clock (‘theta’) rhythm is correlated with the
animal’s location in space5,6. This timing does not reflect the
occurrence of external sensory events precisely timed with respect
to the theta rhythm, but rather must arise because of dynamics
internal to the brain, a conclusion that is reinforced by the existence
of similar phenomena during non-spatial behaviours7.

We have investigated the hypothesis that hippocampal neurons
are organized in time into ‘cell assemblies’ whose activity can reflect
both external sensory input and internal cognitive processes2,17. A
signature of assembly organization is the existence of anatomically
distributed groups of neurons whose activity is synchronized more
than is predicted by common sensory modulation. A second
postulated signature is that, although individual neurons may
participate in many assemblies, not every possible combination of
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cells comprises a cell assembly. The latter feature should be reflected
by a statistical preference in the probability with which a neuron
joins its various peers in synchronous firing.

The activity of simultaneously monitored pyramidal cells, with
neurons arranged according to their physical position within the CA1
region, showed no apparent spatio-temporal patterns18,19 (Fig. 1a, b).
When the units were rearranged so that synchronously firing cells
were displayed near each other, however, the patterns were often
suggestive of a cell assembly organization, with different sets of cells
repeatedly showing synchronous activity at different times (Fig. 1c).

To verify that the visualized assembly organization was not simply
due to chance coincidences of spikes, we used a ‘peer prediction’
method (Fig. 2). Because hippocampal pyramidal cells have place

correlates20, their instantaneous firing probabilities can be predicted
from the spatial position of the rat. Under the assumption of a
‘firing rate code’ for position16,21,22, this is the best prediction that
can be made for a cell’s activity. By contrast, the cell assembly
hypothesis predicts that cells should show synchronous activation
beyond that predicted by their common modulation by sensory
input. Thus, it should be possible to predict a cell’s exact spike times
better from the activity of simultaneously recorded assembly
members than from spatial position alone.

To predict the spike train of a target cell, we estimated the
discharge probability of the target cell at every instant of time
(the ‘instantaneous intensity function’23). To predict intensity
from position alone, the mean firing rate for the animal’s location
was determined from the place field (Fig. 2b). To predict from
peer activity (Fig. 2a), each peer cell was assigned a ‘weight’, which
was either positive or negative (Methods and Supplementary
Information). The activity of positively or negatively weighted
cells increased or decreased the predicted intensity of the target
cell within a specific time window (the ‘peer prediction timescale’).

To determine the weights and to quantify the success of predic-
tion, we used a cross-validation method: weights were chosen to
maximize the success of prediction on one part of the data (the
training set), and the success of prediction was quantified on the
remaining part (the test set). The cross-validation method is
essential to ensure that the predictions are not due to statistical
fluctuations (Supplementary Information). The prediction method
is shown in Fig. 2c, d. Typically, positively and negatively weighted
cells showed peaks and dips in their cross-correlograms (CCGs)
with the target cell (Fig. 2e).

Of the 200 pyramidal cells that met our unit isolation criteria
(Methods and Supplementary Information), the spike trains of 189
(95%) were predictable from space, which were therefore classified
as ‘place cells’. For most place cells (n ¼ 185, 98%), adding popu-
lation activity to the place information further improved spike
timing predictability (Fig. 3a). Additional peer predictability
increased with the number of simultaneously monitored neurons
(r ¼ 0. 55, P , 10214; Supplementary Information).

By varying the peer prediction timescale, the temporal win-
dow within which spike times were best predictable from the
population could be determined. For short temporal windows
(,1 ms) prediction was poor, indicating that spike timing was
not coordinated to this accuracy in the population. Prediction
improved with longer peer prediction timescales, reaching a
maximum predictability of 4.8 bits s21 at 25 ms for a represen-
tative neuron (Fig. 3b), as compared with 3.2 bits s21 for
prediction from space alone. The distribution of the optimal
time windows across the population showed a peak between 10
and 30 ms (Fig. 3c; 95% confidence interval for median, 21–
26 ms). These observations suggest that pyramidal neurons are
organized into assemblies whose activity synchronizes transiently
with a temporal resolution of ,25 ms. Positively weighted cells
are those with which the target cell frequently joins in an
assembly, and negatively weighted cells are those with which
the target cell rarely joins in an assembly.

A mechanism that can affect neuronal firing times is the hippo-
campal theta oscillation24. The timing of spikes within the theta cycle,
in addition to the cell’s firing rate, is correlated with the rat’s position
in space5–8,25. It may be argued, therefore, that correlated assembly
firing arises from the simultaneous phase modulation of cell popu-
lations. We considered two schemes. In the first, neuronal synchro-
nization is due to the dependence of the mean theta phase of each cell
on position, but fluctuations in timing about this mean are random
and independent between cells. In the second, both mean phase and
correlated phase fluctuations contribute to synchronization, in which
case the phase–space correlation is only one manifestation of a more
general mechanism determining exact spike times.

To compare these possibilities, we refined the prediction of spike

Figure 1 Cell assembly activity in a population. a, Location of the recording electrodes.

b, c, Raster plots of 25 pyramidal cells that were active during a 1-s period of spatial

exploration out of 68 simultaneously recorded neurons. b, Neurons are arranged in order

of physical position in the CA1 pyramidal layer (colour-code refers to locations in a).

Vertical lines indicate troughs of theta waves (bottom trace). Location-specific synchrony

is not apparent in the population activity. c, The same spike rasters shown in b, reordered

by stochastic search over all possible orderings to highlight synchrony between

anatomically distributed populations. ‘Cell assembly’ organization is now visible, with

repeatedly synchronous firing of some subpopulations (circled).
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trains from position by incorporating a position-dependent theta
modulation, determined from the neuron’s theta phase field7. In the
first scheme, this is the best prediction that can be made for a cell’s
spike times. In the second scheme, this prediction should be further
improved by peer activity. Figure 4a, b shows an example where the
rat traversed the periphery of the neuron’s place field, producing a
phase pattern considerably more variable than the stereotyped
forward phase advancement seen on linear tracks5. This irregular
spike train was better predicted by peer activity than by the refined
spatial prediction (Fig. 4a).

At the group level, to ensure that phase prediction was not
compromised by poor theta detection, only cases with high theta
signal-to-noise ratio were used (122 cells, 11 recording sessions;
Methods). Incorporation of theta phase improved over prediction
from the place field alone, as expected (n ¼ 89, 73% of cells);
however, peer prediction further improved on the refined spatial
prediction in 89% of these cells (n ¼ 79, Fig. 4c), indicating that
neurons show coordinated activity beyond that predicted by their
simultaneous phase precession.

Hippocampal population firing patterns are therefore different
from those predicted by independent coding of spatial position, even
when position-dependent phase modulation is taken into account.
This interdependence suggests that the temporal structure of neur-
onal activity can be understood only at a population level26. Here, a
picture emerges of neurons organized into temporary coalitions,
whose activity lasts for roughly 25 ms, and whose timing and
membership are determined only partially by the animal’s location
in space. Although a given neuron may be part of several assemblies,
there are statistical preferences in partner selection, as reflected by the
positively and negatively weighted cells. Could the observed assembly
activity result from the precisely timed activation of hippocampal cells
by sensory, but non-spatial, stimuli27? For the timing of non-spatial
sensory events to be the sole cause of the observed synchronization,
the external events would themselves need to show exquisite temporal
coordination, on the scale of tens of milliseconds, with respect to the
theta rhythm. Rather, we propose that the assembly organization
arises from the internal dynamics of neuronal circuits and reflects the
operation of non-sensory cognitive phenomena.

Figure 2 Spike train prediction method. a, Activity of the target cell (top) and a group of

simultaneously recorded cells (bottom). Each peer cell is assigned a prediction weight by

the cross-validation procedure (Methods). The activity of positively or negatively

weighted cells predicts increased or decreased the probability of synchronous spikes in

the target cell. b, The target cell’s place field and the animal’s trajectory (white trace).

Scale bar, 10 cm. c, Instantaneous firing intensity of the target cell predicted from position

(green), or position and peer activity (brown). d, Prediction quality is quantified by

assessing the fit of the actually observed spike train against the prediction. e, CCG of the

target cell with a positively (top) and a negatively (bottom) predicting cell, showing a peak

or trough in the CCG, respectively.
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The observed 25-ms timescale of synchrony may be physiologi-
cally significant. Because it closely matches the membrane time
constant of pyramidal neurons in the hippocampal region9, activity
synchronized with this timescale may be optimal for inducing
spiking in downstream neurons. In addition, this timescale matches
the period of the hippocampal gamma oscillation10 and the effective
window for synaptic plasticity11. We therefore suggest that assembly
activity may be optimal for propagating and storing information in
neuronal circuits. A

Methods
Animals and recordings
Male rats (Sprague Dawley or Long Evans) were implanted with either a 64-site silicon
probe or several movable tetrodes. All experimental procedures were in accordance with
Rutgers University guidelines. Up to 68 cells were recorded simultaneously in 30 recording
sessions from six rats, which were either collecting food pellets in an open environment or
walking on an elevated square track for food reward. An LED was attached to the head
stage to track the position of the animal. Extracellular spikes were extracted from the traces
as described24,28. To avoid spurious synchrony, unit activity was not predicted from cells on
the same tetrode29. For silicon probes, units were not predicted from peer cells for which
the two channels of largest amplitude were the same as for the target cell. We predicted
spike trains only for pyramidal cells that had sufficient isolation quality (isolation
distance $ 20)30 and at least five simultaneously recorded peers. Theta phase was
determined by a Hilbert transform7 for epochs where the theta–delta power ratio exceeded
6 (ref. 24). Theta was filtered at 8–20 Hz.

Analyses
Analyses were done with custom-written MATLAB and Cþþ software. Prediction quality
was evaluated by tenfold cross-validation. We computed firing rate maps f(x) (place fields)
and maps of preferred theta phase and modulation depth (phase fields) from the training
set by a local smoothing method7,30. Instantaneous firing intensity was predicted in time
bins of size 3.2 ms as the product of a spatial term f(x t) and a peer prediction term:

g
a

X
stawa

 !
where s ta is the temporally smoothed spike count of cell a in time bin t, wa is the weight of
cell a, and g(h) is exp(h) for h , 0 and 1 þ h for h $ 0. Weights were fit by maximum
likelihood on the training set, penalized by the term:

2
a

X
w2
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Prediction quality was quantified by the ratio of log-likelihoods:

Lf ¼2
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s

X
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Figure 3 Spike timing is predictable from peer activity. a, Gain in predictability of spike

trains from peer activity in excess of predictability from location, for all pyramidal cells.

Peer activity improved spike train prediction for 98% of cells. b, Predictability versus peer

prediction timescale for a representative cell (indicated by arrowhead in a). Predictability

peaks at ,25 ms, indicating that this is the timescale of synchronization for the

assemblies in which this cell participates. c, Distribution of timescales at which peer

activity best improved spike time prediction, for all cells (expanded in inset). The median

optimal timescale is 23 ms (red line).

Figure 4 Assembly structure is not fully accounted for by spatially dependent phase

modulation. a, Top, theta oscillation and spike rasters for a 2-s data segment. Neurons

are colour-coded by prediction weight onto the target cell (bottom, black raster; indicated

by arrowhead in c). Brown indicates peer prediction factor (fill level 1, neutral prediction).

Green indicates refined spatial prediction, taking into account theta-phase modulation (fill

level 0). Red indicates cumulative gain in predictability of target cell spike train using

peer activity. b, Animal’s trajectory for this data segment, superimposed on target cell

place field. c, Gain in predictability of spike trains by using peer activity for the cell

population, plotted against predictability from the refined (phase-modulated) spatial

prediction. Use of peer activity further improved the refined spatial prediction.
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of the test set spike train under the predicted firing probability relative to a constant
probability given by the mean firing rate on the training set. Computed to base 2, this ratio
estimates the number of bits a communicator of the test set spike train can save by
knowing the predictor variables (position and/or peer cell activity), as compared with
knowing only mean rate. Spike rasters were re-ordered for display by stochastic search over
all possible orderings, to maximize the fraction of spike pairs between neighbouring
rasters that lay within 25 ms (Figs 1b and 4a).

See Supplementary Information for a full description of methods.
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single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron 32, 141–149 (2001).

Supplementary Information accompanies the paper on www.nature.com/nature.

Acknowledgements We thank J. E. Lisman, D. L. Buhl, S. M. Montgomery, P. E. Bartho and

I. Creese for comments on the manuscript. This work was supported by grants from the National

Institutes of Health

Competing interests statement The authors declare that they have no competing financial

interests.

Correspondence and requests for materials should be addressed to G.B.

(buzsaki@axon.rutgers.edu).

..............................................................

Role of the prolyl isomerase Pin1 in
protecting against age-dependent
neurodegeneration
Yih-Cherng Liou1*†, Anyang Sun1,2*, Akihide Ryo1†, Xiao Zhen Zhou1,
Zhao-Xue Yu3, Han-Kuei Huang4, Takafumi Uchida5, Roderick Bronson6,
Guoying Bing2, Xiaojiang Li3, Tony Hunter4 & Kun Ping Lu1

1Cancer Biology Program, Department of Medicine, Beth Israel Deaconess
Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
2Department of Anatomy & Neurobiology, University of Kentucky, Lexington,
Kentucky 40536, USA
3Department of Human Genetics, Emory University, Atlanta, Georgia 30322, USA
4Molecular and Cell Biology Laboratory, Salk Institute, La Jolla, California 92037,
USA
5Department of Pathology, Tohoku University, Sendai 980-8575, Japan
6Tufts University School of Veterinary Medicine, Boston, Massachusetts 01536,
USA

* These authors contributed equally to this work

† Present address: Department of Biochemistry, National University of Singapore, 117597, Singapore

(Y.-C.L.); Department of Pathology, Yokohama City University, Kanagawa 236-0004, Japan (A.R.)

.............................................................................................................................................................................

The neuropathological hallmarks of Alzheimer’s disease and
other tauopathies include senile plaques and/or neurofibrillary
tangles1–4. Although mouse models have been created by over-
expressing specific proteins including b-amyloid precursor pro-
tein, presenilin and tau1–10, no model has been generated by gene
knockout. Phosphorylation of tau and other proteins on serine or
threonine residues preceding proline seems to precede tangle
formation and neurodegeneration in Alzheimer’s disease11–14.
Notably, these phospho(Ser/Thr)-Pro motifs exist in two distinct
conformations, whose conversion in some proteins is catalysed
by the Pin1 prolyl isomerase15–17. Pin1 activity can directly
restore the conformation and function of phosphorylated tau
or it can do so indirectly by promoting its dephosphorylation,
which suggests that Pin1 is involved in neurodegeneration14,18,19;
however, genetic evidence is lacking. Here we show that Pin1
expression is inversely correlated with predicted neuronal vul-
nerability and actual neurofibrillary degeneration in Alzheimer’s
disease. Pin1 knockout in mice causes progressive age-dependent
neuropathy characterized by motor and behavioural deficits, tau
hyperphosphorylation, tau filament formation and neuronal
degeneration. Thus, Pin1 is pivotal in protecting against age-
dependent neurodegeneration, providing insight into the patho-
genesis and treatment of Alzheimer’s disease and other
tauopathies.

Pin1-catalysed prolyl isomerization can regulate the function
and/or dephosphorylation of some phosphoproteins, many of
which are also recognized by the mitosis- and phosphorylation-
specific monoclonal antibody MPM-2. Notably, induction of
MPM-2 epitopes is a prominent common feature of Alzheimer’s
disease (AD), frontotemporal dementia with Parkinsonism linked
to chromosome 17, Down’s syndrome, corticobasal degeneration,
progressive supranuclear palsy and Pick’s disease13,14. In fact, the
pattern of tau phosphorylation in AD is similar to that in mitotic
cells12,14. Taking these observations together with the reduced
amount of soluble Pin1 in brains at a late stage of AD18, we
previously proposed that Pin1 might protect against neurodegen-
eration14,18. However, it has been reported that in AD hippocampal
expression of Pin1 occurs primarily in a few tangle-free degenerative
neurons in CA1 and CA2, and not in CA3 and CA4 non-degen-
erative neurons, and it has been proposed that Pin1 promotes
neurodegeneration20. Thus, the neuronal function of Pin1 remains
elusive.

Neurons in different subregions of the hippocampus and neo-
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